Programming GPIO’s

GPIO Driver Access

The WinCE demo image includes GPIO driver that allows direct access to GPIO functionality.

The GPIO driver is a stream driver that can be accessed via “GIO” prefix.

To hide the implementation details the following interface is defined (in “gpio.h”) for GPIO’s access:

· HANDLE GPIOOpen()

Creates the GPIO device handle that is used in all other functions.

· VOID GPIOClose(HANDLE hDevice)

Deletes the GPIO device handle.

· BOOL GPIOIsAvailable(HANDLE hDevice, DWORD num)

· BOOL GPIOAquireGpio(HANDLE hDevice, DWORD num)

· BOOL GPIOReleaseGpio(HANDLE hDevice, DWORD num)

It is Highly recommend to work with these 3 calls in order to control the the GPIO resources available to applications. Use GPIOAquieGpio in order to let other applications know the GPIO is taken, and use GPIOReleaseGpio when you are done in order to release the resource. These 3 are not mendatory though are highly recommended in order to avoid contradictions between applications trying to use the same GPIO's.

· BOOL GPIOSetAsOutput(HANDLE hDevice, DWORD num, GPIO_VALUE val)

Configures the specified GPIO number(num) to be an output and sets the default value (val).

· BOOL GPIOSetAsInput(HANDLE hDevice, DWORD num)

Configures the specified GPIO number(num) to be an input.

· BOOL GPIOGetValue(HANDLE hDevice, DWORD num, GPIO_VALUE *gpioVal)

Gets the specified GPIO number(num) state. The value can be GPIO_LOW(0) or GPIO_HIGH(1).

· BOOL GPIOSetValue(HANDLE hDevice, DWORD num, GPIO_VALUE val)

Sets the specified GPIO number(num) state. The value can be GPIO_LOW(0) or GPIO_HIGH(1).

· BOOL GPIORegisterInterrupt(HANDLE hDevice, GPIO_INTERRUPT interrupt)

Registers the specified GPIO number(num) to be a source of the interrupt that will be trigered at the specified edge (see the self explenatory GPIO_EDGE_SETTINGS). As a result the handle for interrupt event for this GPIO is returned in “GPIO_INTERRUPT.Event” member.

· BOOL GPIOUnRegisterInterrupt(HANDLE hDevice, DWORD num)

Unregisters the specified GPIO number(num) to be a source of interrupt.

· void GPIOInterruptDone(HANDLE hDevice, DWORD num)

Should be invoked for the specified GPIO number(num) at the end of each interrupt processing.

GPIO Sample Application

This GPIOSample application illustrates the most basic utilization of EM-X270 GPIO’s in Windows CE:

· How to configure GPIO pin on EM-X270 module as output and manipulate it.

· How to configure GPIO pin on EM-X270 as input and respond to changes in signal level.

· Basic polling technique.

· How to setup an event that will be triggered when the system detects an edge on an input pin.

The GPIOSample manipulate the following GPIO’s:

· GPIO 22 (pin 10 on the Keypad Demo Borad P2)
- will be set as output

· GPIO 36 (pin 9 on the Keypad Demo Borad P2)
- will be set as input

· GPIO 96 (pin 8 on the Keypad Demo Borad P2)
- will be set as input.

You will need to attach the demo keypad provided with the eval kit in order to test the GPIO’s.

To test the results of GPIOSample make sure that you can read the voltage of GPIO22 (with DVM) and can control the state (possibly with switch or button) of GPIO36 and GPIO96.

The GPIOSample performs the following action with above GPIO’s:

· Configures an event (with GPIORegisterInterrupt)that will be signaled when any edge is detected on GPIO107 (it is also possible to detect only rising or falling edge).

· On the next step the program waits for the any edge on GPIO36.

During the wait GPIO22's value is inverted every 3 seconds. You can monitor this transition on that pin with DVM.

· At this point, you will have to trigger an edge on GPIO36 to continue. Notice how the program signals the interrupt is done (GPIOInterruptDone) and later clears the interrupt (with GPIOUnRegisterInterrupt).

· The next phase demonstrates polling. The program will continually check the value on GPIO 96, when it will be set as logical 1 (externally by you) the program is over.

NOTE: PLEASE READ THE NEXT PAGE!

The following table specifies which GPIO's are available on the EM-x270 platform:

	#
	GPIO#
	AlternateFunction
	Available with Keypad working
	Pin# on the keypad extender P2

	1
	22
	KP_MKOUT<7>
	Yes- available when using keypad
	10

	2
	34
	KP_MKIN<3>
	Yes- available when using keypad
	1

	3
	36
	KP_MKIN<7>
	Yes- available when using keypad
	9

	4
	39
	KP_MKIN<4>
	Yes- available when using keypad
	3

	5
	91
	KP_MKIN<6>
	Yes- available when using keypad
	7

	6
	96
	KP_MKOUT<6>
	Yes- available when using keypad
	8

	7
	99
	KP_MKIN<5>
	Yes- available when using keypad
	5

	8
	100
	KP_MKIN<0>
	No- Keypad is using it for itself
	

	9
	101
	KP_MKIN<1>
	No- Keypad is using it for itself
	

	10
	102
	KP_MKIN<2>
	No- Keypad is using it for itself
	

	11
	103
	KP_MKOUT<0>
	No- Keypad is using it for itself
	

	12
	104
	KP_MKOUT<1>
	No- Keypad is using it for itself
	

	13
	105
	KP_MKOUT<2>
	No- Keypad is using it for itself
	

	14
	106
	KP_MKOUT<3>
	Yes- available when using keypad
	2

	15
	107
	KP_MKOUT<4>
	Yes- available when using keypad
	4

	16
	108
	KP_MKOUT<5>
	Yes- available when using keypad
	6

NOTES:

· The column "Available with Keypad working":

· If you choose the Keypad component from the Catalog then all GPIO's marked as not available - are not available

· If you did not inlude Keypad in the Catalog then you can use the GPIO's marked as not available

