[image: image1.emf] PAGE
1

I2C Gpio Extender Demo Application

Purpose

In this demo application you will communicate with the CAT9555 GPIO Extender, on the EB-X270, through the I2C interface.

An explanation of attaching a customized I2C device will be given later in the document.

Defining a transaction

I2C is basically a simple protocol so in order to work with it you only need to understand how to configure the Transaction Struct.

Here is an explanation of the struct and it's fields:

typedef struct _i2cTransaction
{

DWORD
mTransactions;

DWORD
mClkSpeed;

UCHAR
mDeviceAddr;

DWORD
mOpCode[I2CTRANS_MAX_STREAMED_TRANSACTIONS];

DWORD
mBufferOffset[I2CTRANS_MAX_STREAMED_TRANSACTIONS];

DWORD
mTransLen[I2CTRANS_MAX_STREAMED_TRANSACTIONS];

DWORD
mErrorCode;

UCHAR
mBuffer[I2CTRANS_BUFFER_BYTES];

} I2CTRANS;

This is the struct as defined in the i2c.h file.

· mTransactions – is the number of transactions you are about to do. For example: if you intend to first write a register and then read it, then the number of transactions you will do is 2.

· mClkSpeed – Can be given two values, I2C_CLOCK_FAST_MODE, (400k), and I2C_CLOCK_REGULAR_MODE, (100k).

· mDeviceAddr – The address of the device to address, must be 7 bit and no more

· mOpCode – Determines the nature of the transaction, can be I2C_OPCODE_WRITE or I2C_OPCODE_READ

· mBufferOffset – Specifies each transaction's offset in the mBuffer data array. mBuffer is the shared data buffer for transactions, meaning that if you have to write 2 bytes and then read 3 bytes, after completing the two transactions the next free index will be 5. So the offset tells each transaction what index is the first one for it to use. An example is given in the code and another later in this document.

· mTransLen – Length of the transaction in bytes.

· mErrorCode – Reserved

· mBuffer – stores the actual information for both kind of transactions. If it is a write transaction then you as auser need to fill the data, otherwise the data will be filled by the bus.

The following (Pseudo Code format) describes the driver’s algorithm:

1. Set the clock speed according to mClkSpeed

2. FOR i=0 TO i=mTransaction-1

IF (mOpCode[i] == I2C_OPCODE_WRITE) THEN

FOR j=0 TO mTransLen[i]-1

write mBuffer[mBufferOffset[i]+j] to the bus.

ELSE IF (mOpCode[i] == I2C_OPCODE_READ) THEN

FOR j=0 TO mTransLen[i]-1

read mTransLen[i] bytes from the bus into mBuffer[mBufferOffset[i]+j]

 ELSE “Fail – OpCode not supported”

About the example program

The extender's spec can be found in this link. You will need it in order to see the protocol that needs to be used.

In the example we first read the Configuration registers (address is supplied for register 0 but we read 2 bytes so the device gives the contents of register number 1 in the 2nd transaction), notice that the first time we use the normal mode clock(100K). Then we write to the registers the following: Config0=0xFE Config1=0xFF, to set all pins except for pin 0 as inputs. Then we read the contents again to see that the value has changed (only done for the example's sake).
Next we move on to the Output Port registers (again we first read them, then change them and read them again to see the value has changed). By setting OutPort0=0x01 and OutPort1=0x00, we should expect to see pin number 1 on P9 in the EB-X270 to output a low output while all the rest of the pins give high output.

How to connect your own devices

The I2C interface's 2 lines can be attached to on the EB-X270 in pins 19(SCL) and 20(SDA) of U5.

If you are going to use your own board then you can connect to pins 132(SCL) 136(SDA) in the extender board connector on the EM-X270 board.
PAGE
1

